Tutorial Introduction to Java Network programming

In which our hero (that’s you) with some well-structured guidance (from our fearless note compiler and Sun Microsystems themselves!) produces Java systems using Streams, Sockets, Multi-Threading, and Graphical User Interfaces. So grab your computer, watch out for the jet stream, and follow me ….

Section 1: An Introduction to Client-Server Systems

A client server system is a system in which one system (the server) provides services for another (the client). The two systems usually reside on different computers, perhaps on different continents. Although, the constraints of the course computing arrangements dictate that most of our examples will be tested in setups in which the client and server reside on the same machine, the software we produce could be used without change in the distributed setting,

 In the rest of this course we will see several different types of client-server systems: for example mail servers, web servers, and database servers. Some seemingly difficult requirements of these systems should be easy to spot. For example, the server must run continually always ready to respond to requests (we will see how threading and event-based programming in Java makes this possible), the server must be able to serve more than one client at a time, and (most fundamentally) the various processes have to be able to connect to each other and exchange information (we will learn two ways to do this in Java: Sockets and RMI).

Here follows a schematic of a client server system:

[image: image1.wmf]
Figure 1: An abstract architecture for a client–server system

Section 2: A Simple Client-Server System in Java

To give you an idea of how a client-server system works and how we can create our own. We will consider the server and client programs that we discussed in lectures. First I will give you the code, and then I will explain it, and then I will discuss how you may have arrived at such a system yourself.

2.1 The Programs

First the Server:

import java.net.*;
import java.io.*;
import java.util.*;

public class DateServer {

 public static void main (String args[]) throws IOException {

int port = 1234;

ServerSocket server = new ServerSocket(port);

while (true) {

 System.out.println("Waiting for client...");

 Socket client = server.accept();

 System.out.println("Client connected.");

 OutputStream out = client.getOutputStream();

 Date date = new Date();

 byte b[] = date.toString().getBytes();

 out.write(b);

}
 }
}

Now the client

import java.net.*;
import java.io.*;

public class DateClient {

 public static void main (String args[]) throws IOException {

Socket server = new Socket("localhost",1234);

System.out.println("Connected”)

InputStream in = server.getInputStream();

byte b[] = new byte[100];

int num = in.read(b);

String date = new String(b);

System.out.println("Server said: "+date);
 }

}

Read the code carefully and make out of it all you can. The important concepts are embedded in the Stream and Sockets definitions.

2.2 The Explanation

The general connections are given in the picture below:

[image: image2.wmf]
Abstract view of connection between client and server

The computers on which the client and server reside (normally these are different computers, but in the Time system, both reside on the same computer) have been excluded from the picture since the focus is on the connection being made between the client and server programs. It shows pictorially how the client and server are connected by ‘plugging’ together (joining) their respective socketsIt also indicates the way in which the message is sent from the server to the client via the two shaded streams (i.e. the output stream of the server’s socket and the input stream of the client’s socket).

Each program has a socket and each socket is associated with two streams: one for output and the other for input. In the picture the server is shown using its socket’s output stream (shaded) to write the message. The client, in turn, uses its socket’s input stream (shaded) to read the message. The client then outputs this message to the screen (not shown).

When the server sends a message to the client (or vice versa), you should think of it as a two-stage process. The server uses its output stream to send the message to a sink (not shown in Figure 2). The client in turn must use its input stream to fetch the message from this sink (which, for the client, is now a source. This sink/source can be thought of as a ‘pigeon hole’ or ‘mail box’ into which the server drops a message and from which the client retrieves it. Communication in the opposite direction will work in exactly the same way, but with a separate ‘pigeon hole’. All the details needed to implement such a model are, of course, hidden from the programmer.

2.3 Dissecting the Programs:

Bearing that general description in mind, let’s go back and look at the programs line-by-line.

First the Server:

The first three lines import various packages, the classes and methods of which are then available to the programmer. Much of writing programs is scanning these packages and finding the pre-written code that does what you need. We will study java.net later.

import java.net.*;
import java.io.*;
import java.util.*;

The name of the Class:

public class DateServer {

TheMain Method (the method that gets called at opening). Note that main always takes an array of strings as input, this array os called args, and is declred to be public (available to other classes) and static (defined once and for all at the class, so that the method is shared by all objects rather than residing with each object indivisually). In this case the method will throw an exception if given unreadable input.

 public static void main (String args[]) throws IOException

Define the port on the computer at which the connection will take place. Note that a port is represented as an integer that names the port.

int port = 1234;

Now that you have a port you define a ServerSocket on it. We will name the ServerSocket “server”. We will learn later what a ServerSocket is, for now suffice it to say that is an object that listens for requests to make connections. Note also that since ServerSockets are objects, we ned the new construct when we deifine one. In the line below the first word is the class or typr of the opbject the second is the name of the object, the third (after the new) is a Constructor and the last is the parameter for the constructor.

ServerSocket server = new ServerSocket(port);

The next line is interesting. It is the beginning of a while loop. The while loop has a slightly different ststus than those with which you will be familiar. The purpose of this one is to keep the server permanently on and ready. You want the system to repeatedly loop through this code, so you make it always go back. That is you neeed th guard condition on the loop to be always true. You can use a condition such as (2=2) for this, but the simplest, if not the most easily understood, is just to use “true”. The line says justt keep doing whatever is in the brackets.

while (true) {

The next line isn’t part of the main functioing of the program, but is more a diagnostic. It forces the machine to write to the standard output to let us know it is there and doing its looping. It may be worth noting here that System.out is a Stream.

 System.out.println("Waiting for client...");

Now we get to the real stuff: what happens when somebody tries to connect to us. Essentially they will send a request to our ServerSocket, which is called server. We then will accept it using a the accept method that is a parof of the ServerSocket definition, that is we will send our ServerSocket an accept method and it will know what to do with it. What it will do is to create a new Socket (this is different from a ServerSocket) called client. The client socket is a whole for streams to get through.

 Socket client = server.accept();

Now another diagnostic to let us know a connection has been made.

 System.out.println("Client connected.");

Now that a connection has been made a Stream must be created through the socket that we have already setup. The Stream will be an OutputStream (which we will call out—not to be confused with Sytem.out!!) and it will be created by a Socket method that belongs to the socket client. The method isa getter called getOutputStream() (as you may have been able to guess, but if not you would easily have found it by looking through the Java class hierarchies on the Sun Website—more on this later)

 OutputStream out = client.getOutputStream();

The idea of this server is to send the date to a client. So we obviously need to get the date. There is a pre-defined class of dates and a predefined constructor that makes a Date object that represents the present date and time. The class is defined in the Java.util package and since we have imported that package in the start of the class, it is available to us now.

 Date date = new Date();

Ordinary streams only allow bytes and arrays of bytes to be carried along them. So we need to translate the date to an aarry of bytes in order to send it. This is a two stage process: we first use a method in date for turning the date into a string, and then the string getter method getBytes() to turn the string into a byte array.

 byte b[] = date.toString().getBytes();

Finally we are ready to output the byte array b on the Stream out. We use the OutputStream method write to do this.

 out.write(b);

}
 }
}
Some important things to note:

1. a port defines an address for a way to get data into or out of a computer

2. a serverSocket listens on a port, waiting to make a socket for a connection

3. a socket is a connection that can let in and.or send out streams of data

4. a stream is flowing data. The simplest kinds of Streams just allow bytes and byte arrays to flow along with them.

Exercise make a similar narrative for the Client.

2.4 Arriving at a solution

Once you have the basic ideas of designing programs in Java, you should find it much easier to make complicated powerful programs than it was in earlier generations of computer languages. The reason for this is that Java has extensive libraries of pre-defined classes arranged in a logical hierarchy (that is, it is another tree structure!). Moreover, the class hierarchy is open to inspection at the website:

java.sun.com

one of the most important things for you to learn is how to use the sun site (or help system in an IDE) to find the classes you need.

You have already seen clues to the class hierarcy in import statements. For example the statement

import java.net.*;

implies that below the root node java there is a node net that represents a package of classes. Not surprisingly, this is a package that has many of the classes we will need in CIS332.
The java.net package

The java.net package is relatively large, but for the purposes of this course, only a few of its classes will be examined. The client–server system we have seen relies on Socket and ServerSocket. Another class that has come up in both the lectures and workshops is InetAddress. A few remarks about these classes may be helpful. Remember though that I am not giving you any information that cannot be accessed easily from the sun website.

· InetAddress An object of this class is used to represent an Internet address. It has no public constructors. Instead it uses public static methods that return an Internet address when used anywhere in a program. One of these, getLocalHost (),xe "getLocalHost (), 3.2:" returns an InetAddress object representing the Internet address of the local host machine (the machine on which the program is executing). Another, getByName (String host),xe "getByName (String host) , 3.2:" returns an InetAddress object representing the address of the host specified by name. Note that both of these methods throw exceptions and therefore must be used within a try statement.

· Socket An object of this class is used to establish a connection (sometimes referred to as a socket connection between client and server processes. Its constructor methods (it has more than one) associate a new socket (sometimes referred to as connection socket) with a specified host (IP address) and host port. The client and the server must each construct a socket, so that the connection can be thought oft as being made by these two sockets joining together.
A socket is also associated with both an input and an output stream to enable data to be communicated via the connection. This means that the client process, say, can send data to the server via the output stream associated with the client's socket, which the server can receive via the input stream associated with the server's socket, and vice versa.

The method getInputStream ()returns an InputStream object, and getOutputStream returns an OutputStream object. The methods getInetAddress and getPort () return the Internet address of the computer and the port of the socket respectively. Note that all the constructors, as well as getInputStream () and getOutputStream (), throw exceptions and must be used within a try statement.

· ServerSocketAn object of this class (not to be confused with the class Socket) is used by a server to ‘listen’ for connection requests from clients, and then establish a socket connection with each client. A ServerSocket object must be associated with a port where it can listen for a request using the method accept (). The method accept () has a dual function: it not only listens for a client request, but when this is received, returns a socket (of type Socket) for the server, which is connected to the client’s socket. Note that, accept () throws an exception and therefore must be called within a try statement.

It is easy to confuse the various terms associated with the above classes, in particular, a ServerSocket object with the server’s Socket object. The former does not have input and output streams: its role is to provide the facilities to listen for a client’s request and then to create the server’s Socket object, which is connected to the client’s Socket object. The term connection socket will be used as a synonym for socket when we wish to distinguish a socket from a server socket. Socket connectionxe "socket connection, 3.2:" and connectionxe "connection, 3.2:" will be used interchangeably to refer to the abstraction of two sockets (the client’s and the server’s) being joined together.

2.5 The client

Before leaving this very simple example, I just want to say a few words about sockets in the context of the client. To connect to the Server, the client attempts to create a connection socket associated with the local host at a port. If there is a server ‘listening’ at this port to accept the request, the input stream associated with this socket will be used as the basis for inputting the server’s date message, and outputting it to the terminal.

The constructor of Client class shown contains the statement

Socket server = new Socket("localhost",1234);

An alternative statement that will work on all machines is

Socket sock = new Socket (InetAddress.getByName (null), portNumber);

In the Practical Activity, both the client and the server were running on the same machine, which is useful when debugging the programs. Ultimately, however, the client and server would be on different machines and it would be the responsibility of the client to link up with the server at a particular port on the server’s host machine. In these cases, the required statement is

Socket sock = new Socket (InetAddress.getByName (domainName), portNumber);

where domainName is a string representation of the domain name of the remote machine (which could be the IP address of the remote machine placed inside quotes). This means that we could also have used

Socket sock = new Socket (InetAddress.getByName ("127.00.00.01"), portNumber);

for connecting to the local host.

Main Exercise: Write a Knock-knock Server and Client. The Client program will allow the user to input “Knock knock” etc. and the Server will do the automatic responses.

_1066197295.doc
[image: image1.png]gl e IR
sefmars Thptosl lkeatand sever

Y
ki
e
it cagion.

Shtconecin

