XML

Introduction

 XML documents actually consist of several layers of code. The first, the Data Type Definition (DTD), defines the rules, and relationships of your meta tags. The second part of the code is the application of the XML tags you defined. These two sections can be imbedded into one file, or they can be two separate files that are linked together. The presentation is the last layer of an XML document. Style Sheets (either CSS or XLS) allow developers to alter the appearance and function of their XML. This instruction sheet should explain what you need to do to construct the first two layers of an XML document.
While you are coding, keep in mind that XML is case sensitive, ignores white spaces, and uses the following reserved symbols: <,>,&,”,%. Reserved words are in bold-italics. Developer supplied content is underlined. Content supplied by the developer but limited to a list of possibilities, is marked in italics.

Parsing (Validating v. Non-Validating)

XML is not a compiled language, so to check the validity of your code you need to employ a third party application called a parser. Non-validating parsers such as a web browser will evaluate the syntax of your code and identify any errors. They will, however, not catch even the most obvious semantic errors such as the use of undefined tags. Still, they are quick and easy way to knock most of the bugs out of an XML document. Validating parsers will take the evaluation of code one step further by applying the rules established in the DTD and making sure all your tags are properly defined and used. Brown University has a validating parser on the web that is quick and has useful error notes (http://www.stg.brown.edu/service/xmlvalid/), but will not display your XML.

Declaration

This statement identifies documents as XML code and must be the first line in your code. All that is required is the XML version, any other declaration statements are optional. Optional statements include:

encoding- indicates language you are using in your mark-up document. Although there are many syntactically correct settings for this option, few are supported. Since we will be using English (the default) it is not necessary to declare this.

standalone- can be set to “yes” or “no” and is supposed to indicate if your XML document is linked to external documents (such as a Document Type Definition or Style Sheet) or if all its code is imbedded. Parsers tend to ignore this setting however. If your code includes links to external documents they will be included. If not standalone = “yes” is assumed, regardless of the declaration setting.

syntax <?xml version=”1.0”?>
or
<?xml version=”1.0” encoding =”UTF-8” ?>
Commenting
It is always good practice to thoroughly document your code. XML has only one style of comment markers, unlike other languages that offer different single and multiple line markers. Comments can be inserted in the middle of XML statements, on a line of their own, or across multiple lines.

syntax <!-- comment -->
or
<!--

comment

comment

comment

-->

Doctype Declaration
This must be the first declaration of your DTD and the first element of your XML document. Your doc-name can begin with an underscore (_) or letter and can contain numbers, upper and/or lowercase letters, underscores (_), and/or periods (.). Names can not begin with numbers or periods (.) or contain spaces(), or symbols (=,:,%,£,etc).

syntax <!DOCTYPE doc-name [

…element declarations…

]>

If you want to declare your DOCTYPE using an external file to hold the actual definition of the DOCTYPE, you can make an external call to the file within your declaration.

syntax <!DOCTYPE doc-name SYSTEM “file-name” [

…additional declarations…

]>

or
<!DOCTYPE doc-name SYSTEM “file-name” >
Name Spaces

When incorporating many external DTDs into your XML you may find that some element names are used more than once. To help the processor keep things straight, you can declare name spaces. In essence, name spaces are just prefixes that point to appropriate source files so you can distinguish two elements, that would otherwise have the same name, without altering their source. You should be able to use one prefix for a parent and its children from each source file.

syntax - <element-name xmlns: prefix = “source URL”>
Element Declaration
This is the instruction set for your mark up tags. Each tag you create must be laid out in your DTD with this declaration. The naming rules laid out in Doctype Declaration apply here as well. As a general rule, try to use meaningful, descriptive naming schemas.

Element Content-

#PCDATA- indicates the element consists of character data only and has no children.

children -The element can contain no character data, but consists instead of one or more child elements. Child elements are defined after their parent element declaration.

EMPTY - the element can contain no content, child or character data, but may still have attributes.

	rules for combining content

	A | B
	A or B, but not both

	A , B , C
	A and B and C, in order

	A & B
	A and B only, in any order

	A?
	A occurs 0 or 1 time

	A*
	A occurs 0 or n times

	A+
	A occurs 1 or n times

ANY - indicates the content is unrestricted and can contain character data, or children, or a combination.

mixed content - like ANY, the content of the element can be character data or child elements. The difference is a mixed content declaration provides an explicit list of inclusions.

syntax <!ELEMENT element-name (content)>

Element Attributes
Attributes provide metadata about an element. This information can be easily searched, but not as easily displayed. Attributes should be used for data that groups elements or identifies a specific instance of an element that is, in and of itself, not of interest to the end user. Naming rules for attributes are the same as for DOCTYPE and ELEMENT. The most common data-type-declarations for attributes are:

CDATA – character data (except reserved symbols).

entity - an entity or string of entities.

enumerated – a list of possible values separated by a pipe (|).

ID – indicates that the value assigned will be unique. ID values must start with a character and follow other naming rules above.

The default value setting can have the following values:

#REQUIRED – indicates a value must be provided. Please note: non-validating parsers will not check to see if required attributes have been provided.

#IMPLIED – indicates the attribute is allowed to have a value, but it can be left blank.

#FIXED “character-data” – indicates the attribute may only contain the value provided in quotes. Attributes specified as #FIXED do not need to be specified because the only acceptable value is known and will be applied in every instance of the element.

“default-character-data” – used in conjunction with #IMPLIED, CDATA, or enumerated data types this value will be applied whenever another valid value is not given.

syntax <!ATTLIST element-name attribute-name attribute-type default-value>
Internal Entities

Entities can be declared to provide a ‘short hand’ way of referencing chunks of data you intend to repeat (excluding reserved symbols). This short cut makes both programming and maintenance easier. You can string entities together or use entities in the declaration of other entities (just watch out for cyclical references).

syntax <!ENTITY entity-name “entity-value”>
From this point on you can simply reference the entity-value by calling the entity.

syntax &entity-name;

External Entities
An entity’s scope is limited to the document in which it was declared. If an entity will be useful to you in multiple files you may want to create a separate file that defines its content so you will not have to start from scratch each time. To declare entities using content from external files use the following syntax. Keep in mind the file you are calling must contain nothing but the intended content the ENTITY.

syntax <!ENTITY entity-name SYSTEM “file location”>
External and internal entities are referenced the same way.

syntax &entity-name;
Valid Example of Imbedded DTD XML

	<?xml version="1.0"?>

<!DOCTYPE booklist [

<!ELEMENT booklist (book+)>

<!ELEMENT book (title,author+,cost?,status)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT author (#PCDATA)>

<!ELEMENT cost EMPTY>

<!ELEMENT status (#PCDATA)>

<!ATTLIST book isbn ID #REQUIRED subject CDATA #IMPLIED>

<!ATTLIST cost bps CDATA "10.99">

<!ENTITY in "This book is currenty in stock">

<!ENTITY out "Sorry, this book is currently out of stock">

]>

<booklist>

<book isbn = "c123" subject = "adventure">

<title>Call of the Wild</title>

<author>Jack London</author>

<cost bps = "15.25"/>

<status>&out;</status>

</book>

<book isbn = "c456">

<title>The Hobbit</title>

<author>JRR Tolkien</author>

<status>∈</status>

</book>

</booklist>

