
Dependence Communities in Source Code

James Hamilton and Sebastian Danicic
Department of Computing

Goldsmiths, University of London
United Kingdom

Abstract—The concept of community structure arises from
the analysis of social networks in sociology. Community struc-
ture can be found in many real world graphs other than social
networks. Recently, efficient community detection algorithms
have been developed which can cope with very large graphs
with millions of nodes and potentially billions of edges. So,
for the first time, there is the potential for investigating
communities in real industrial-strength software at the state-
ment level. We provide empirical evidence that dependence
between statements in software does, indeed, give rise to
community structure. Initial findings suggest that the separate
dependence communities are far from arbitrary. They appear to
decompose systems into areas of distinct functionality. This new
approach to system decomposition has tremendous potential
in many areas of software engineering, particularly in reverse
engineering of legacy software and program comprehension.

I. INTRODUCTION

Many naturally occurring phenomena can be represented
in terms of graphs with edges and vertices. An understanding
of the community structure of such graphs can give us a
deeper understanding of the phenomena themselves. This
idea has already been applied in many areas including
sociology [1–3], biology [4] and, of course, computing [5].
This paper is the first to investigate the community structure
in dependence graphs of program statements in software.

Informally, a set of vertices of a graph is a community if
the number of internal edges is more than expected given
the degree distribution of the vertices [6].

Figure 1: A graph, with highlighted communities.

The size and complexity of industrial strength software
systems are constantly increasing. This means that the task
of managing large software projects is becoming even more
challenging. Software clustering approaches can have an
important role in the task of understanding large, complex
software systems by automatically decomposing them into
smaller, easier-to-manage subsystems. In this paper, we
present an initial investigation into whether partitioning
software into graph-theoretic communities of statements can
be usefully applied to this problem.

The graphs we consider, called Backward Slice Graphs
(BSGs), are made up of vertices which represent the program
statements and edges that represent dependencies between
these statements. In industrial software, such graphs will
typically contain millions of vertices and possibly billions
of edges. New community detection algorithms such as the
Louvain method [7] have successfully been applied to graphs
of this size. There is now, therefore, the possibility that such
techniques can be applied to real-world industrial software.

We believe that for a clustering technique to be useful in
software engineering it must provide what we call Semantic
Separation, i.e. the clusters must in, some sense, partition
the system into its different functionalities. In this paper, we
provide initial evidence that the communities produced by
applying the Louvain method to BSGs do, indeed, give rise
to semantic separation.

Community structure has previously been found to exist
in software, but not nearly at such a fine-grained level. It
was found [8], for example, that Java class dependency
networks show a clear community structure and that the
detected communities do not exactly correspond to defined
packages. Valverde and Solé [9] analysed class dependency
networks and found several highly frequent network motifs
that appear to be a consequence of network heterogeneity
and size, rather than as a result of the functionality of
software. Paymal et al. [10] also applied a community
detection algorithm to a class dependency network and
examined changes in communities of interacting classes,
over different versions of the software. The Bunch tool [11]
looks for community structure in the Module Dependency
Graph which includes high-level system components such
as Java classes or C source files that are connected due to
dependence. The purpose of the tool is to help maintain and
understand existing software by clustering related modules

978-1-4673-2312-3/12/$31.00 c© 2012 IEEE

together.

II. COMMUNITIES IN GRAPHS

A community in a graph with vertex-set V is a subset
Vi of V where the difference between the number of edges
connecting elements of Vi and the expected number of edges
connecting elements of Vi based on the degree distribution of
Vi is positive. A positive value indicates that the tightness of
connectivity of Vi is better than expected. Where this is the
case, then we say that Vi is a community. Clearly, the higher
the value, the stronger the community. A community where
the sum of the degrees of the vertices was low would have
a lower expected number of internal edges than one where
the sum of the degree of the vertices was high. This implies
that it is possible for a weakly connected set of vertices of
low degree to be a stronger community than a more strongly
connected set of vertices of high degree.

We can partition the vertices of a graph into subsets {Vi}
(the elements of the partition). In general, some elements in
a partition may be communities and others may not. As well
as computing the community structure of each element of
the partition, we can measure the community structure of the
whole partition based on the strength of community structure
of each element of the partition. This quantity is known
as modularity [7]. The modularity of a partition is a value
between -1 and 1 that measures the density of links inside
communities as compared to links between communities.
Once again, if a graph has positive modularity it is said to
possess community structure.

A. Community Detection

Given a graph, finding the partition with the highest
modularity is NP-hard. The Louvain method [7] is, however,
a fast algorithm that can find high modularity partitions in
very large graphs. The algorithm combines neighbouring
nodes until a local maximum of modularity is reached and
then creates a new network of communities; these two steps
are repeated until there is no further increase in modularity.
This is the algorithm we have used in the work presented in
this paper.

III. DEPENDENCE COMMUNITIES

Before we can look for communities of statements in
software, we need a suitable graph in which to look for
such communities. We want edges to represent dependencies
between statements. Program slicing [12] is a technique
which computes a set of program statements, known as a
backward slice, that may affect a point of interest known as
the slicing criterion. The backward slice of a given statement
s contains all the other statements upon which s depends.
A natural choice was, therefore, to connect vertex v1 to v2
if v1 is in the backward slice of v2. We call such a graph

int main() {

const int N = 10;

int sum = 0;

int product = 1;

int i = 1;

while(i < N) {

sum = sum + i;

product = product * i;

i = i + 1;
}

printf("%d\n" , product);

printf("%d\n" , sum);

}

Figure 2: The Sum Product Program with 3 communities
highlighted in different colours

a BSG. 1. Communities in the BSG will, thus, be sets of
statements with strong interdependencies. We call such sets
dependence communites.

As an initial experiment, we used the slicing tool
CodeSurfer [14] to produce the BSG of the well-known Sum
Product program in Figure 2. We then applied the Louvain
method to find communities in this BSG2. We found the
results far from arbitrary: the algorithm partitioned the graph
into communities each of which approximated to different
semantic concerns of the program (see Figure 2). There are
three communities detected in this program: the sum com-
munity, the product community, and the support community.
This initial promising result was the evidence which led us to
investigate these communities more extensively in an initial
empirical study.

IV. INITIAL EMPIRICAL STUDY

The programs studied are a collection of 44 open-source
programs that cover a range of application domains includ-
ing games, small and large utilities and operating system
components. In the smallest program we analysed 71 lines of
code, while in the largest we analysed 76,369. The total lines

1We also considered looking for communities in the System Dependence
Graph (SDG) [13]. Here vertices are only connected if there is a direct
data or control dependence. Transitive dependencies are not connected.
Intuitively, transitive dependencies are as important as direct ones (their
effect is just as important) and so we rejected this approach. To back up
our intuition, we applied the Louvain method directly to the SDG in a
number of cases and found there was a strong correlation between the
communities and the separate procedures in the programs. The reason for
this is high ratio of intra procedural edges to interprocedural edges in the
SDG.

2Although the BSG is a directed graph, the standard Louvain method is
applied to undirected graphs. Future work will compare this approach with
variants of the Louvain method which take direction of edges into account.

Figure 3: BSG for the program in Figure 2, with 3 commu-
nities highlighted in different colours.

of code analysed for the set of programs was 464,621 and the
average lines of code analysed per program was 10,559.57.
For each program, we first computed the BSG with the help
of CodeSurfer and then applied Louvain method to each
BSG. As well as measuring the modularity, we calculated the
number of dependence communities, the size of the smallest,
the size of the largest and the average size of communities
measured as a percentage of program size.

An important result of the study is that all 44 programs
have a positive modularity (although some are almost zero)
which is evidence that dependence in software may, indeed,
exhibit community structure at the statement level.

A. Semantic Separation

As implied earlier, a dependence community is a set of
statements in a program that have higher than expected
dependence between them. It seems plausible that such
collections of statements will be part of the same functional
behaviour of the program. An important part of our empirical
study was to investigate this hypothesis. To do this, we
manually inspected several programs and their dependence
communities to see if, like the Sum Product example, the
communities closely approximated the separate semantic
concerns of the program.

B. GNU wc

In the GNU wc program, that counts lines, characters and
words in a text file, we found two dependence communi-
ties (see Figure 4). The two dependence communities are,
broadly speaking, the counting community and the input/out-
put community. The counting community consists of the
parts of the program which deal with counting the values of

Figure 4: Dependence Communities detected in the wc
program.

lines, characters and words in a file; this includes statements
that iterate through the characters in a file, statements that
increment counters, and statements that deal with checking
if a string is a word. The input/output community contains
statements which deal with the opening of the file, printing
of error messages and printing of the results of the counting
community.

C. GNU bc

The program bc is an arbitrary precision numeric pro-
cessing language [15] which is a utility included in the
POSIX standard. The program parses input from the user,
translates it into bytecode and executes the bytecode. In
the program, two main dependence communities were de-
tected: the parser and the calculator. These two dependence
communities combined make up 96% of the program; the
parser community is 51% of the program and the calculator
community is 45%.

D. GNU Chess

GNU Chess [16] is another program with clearly defined
dependence communities which correspond to syntactic
modules of the program. The program is composed of
three loosely-coupled modules: the front-end, adapter and
engine; the adapter sits in between the front-end and the
engine. The three main communities detected in the BSG
correspond to these three components of the software.

The dependence communities in these three programs show
clear semantic sepraration: in all cases the Louvain algortihm
has partitoned the BSG into separate functionalities of the
program.

V. CONCLUSIONS AND FUTURE WORK

This work is the first to investigate community structure
at the statement-level in software. We introduce the concept
of a dependence community and have shown that, at this
level, BSGs have community structure and that the Louvain
method seems to place the program statements in commu-
nities that reflect the semantic concerns. This new approach

has applications in all areas of software engineering where
system decomposition is important, including reverse engi-
neering of legacy software and program comprehension.

We believe that good semantic separation is the key to
the usefulness of partitioning techniques in software engi-
neering. (There is little point in breaking a piece of software
into smaller components if these components do not in some
way reflect different functionalities.) Of course no auto-
mated approach can perform perfect semantic separation.
Our hypothesis is that dependence communities computed
using new algorithms applied to program graphs can give
sufficiently good semantic separation to be highly applicable
in a number of areas of software engineering, including re-
engineering and re-factoring, maintenance, comprehension
and metrics.

The overall aim of future work will be to investigate
the applicability of novel algorithms in community
detection to these graphs and assess the impact on software
engineering by measuring the resulting semantic separation
and comparing it with other approaches. Importantly, we
need to understand why some approaches to semantic
separation are better than others in order that the techniques
can be improved. This breaks down into the following tasks:

(1) Measuring semantic separation. This will be done by
employing techniques similar to watermark injection [17].
Intertwining a number of pieces of code with separate func-
tionality and measuring how well the pieces are separated
again by the community detection algorithm.

(2) We will take advantage of the fact that we have already
developed the infrastructure for dependence community de-
tection of large programs and perform a large empirical
study on a large number of real programs which measures
the semantic separation in our approach and compares it
with other clustering techniques.

(3) Investigating methods of improving the semantic sepa-
ration in dependence communities. So far we have looked
for communities in only one form of program dependence
graph. Other similar program based graphs and community
detection algorithms may be more appropriate.

(4) A theoretical analysis of semantic separation. Which
semantic aspects of program are approximated to by depen-
dence communities and why? This understanding may lead
to better approaches to semantic separation of software in
future.

REFERENCES

[1] S. Wasserman and K. Faust, Social Network Analysis:
Methods and Applications (Structural Analysis in the
Social Sciences). Cambridge University Press, 1994.

[2] M. A. Porter, J.-P. Onnela, and P. J. Mucha, “Commu-
nities in Networks,” Notices of the American Mathe-
matical Society, vol. 56, no. 9, Feb. 2009.

[3] F. Liljeros, C. R. Edling, L. A. Amaral, H. E. Stanley,
and Y. Aberg, “The web of human sexual contacts.”
Nature, vol. 411, no. 6840, pp. 907–8, Jun. 2001.

[4] R. Albert, “Scale-free networks in cell biology.” Jour-
nal of cell science, vol. 118, no. Pt 21, pp. 4947–57,
Nov. 2005.

[5] A. Potanin, J. Noble, and M. Frean, “Scale-free geom-
etry in Object Oriented programs,” Communications of
the ACM, vol. 48, no. 5, pp. 1–8, 2002.

[6] M. Girvan and M. E. J. Newman, “Community struc-
ture in social and biological networks.” Proceedings of
the National Academy of Sciences of the United States
of America, vol. 99, no. 12, pp. 7821–6, Jun. 2002.

[7] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and
E. Lefebvre, “Fast unfolding of communities in large
networks,” Journal of Statistical Mechanics: Theory
and Experiment, vol. 2008, no. 10, p. P10008, Oct.
2008.

[8] L. Šubelj and M. Bajec, “Community structure of
complex software systems: Analysis and applications,”
Physica A: Statistical Mechanics and its Applications,
vol. 390, no. 16, pp. 2968–2975, Aug. 2011.

[9] S. Valverde and R. Solé, “Network motifs in compu-
tational graphs: A case study in software architecture,”
Physical Review E, vol. 72, no. 2, Aug. 2005.

[10] P. Paymal, R. Patil, S. Bhowmick, and H. Siy, “Empiri-
cal Study of Software Evolution Using Community De-
tection,” University of Nebraska, Omaha, Tech. Rep.,
2011.

[11] B. Mitchell and S. Mancoridis, “On the automatic
modularization of software systems using the bunch
tool,” IEEE Transactions on Software Engineering,
vol. 32, no. 3, pp. 1–16, 2006.

[12] M. D. Weiser, “Program slices: formal, psychological,
and practical investigations of an automatic program
abstraction method,” PhD, University of Michigan,
Ann Arbor, 1979.

[13] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural
slicing using dependence graphs,” ACM Transactions
on Programming Languages and Systems, vol. 12,
no. 1, pp. 26–60, Jan. 1990.

[14] GrammaTech Inc., “CodeSurfer,” 2011. [Online].
Available: www.grammatech.com

[15] GNU, “bc,” 2011. [Online]. Available: http://www.
gnu.org/software/bc/

[16] GNU, “Gnu chess 6.0.0,” 2011. [Online].
Available: http://www.gnu.org/software/chess/manual/
gnuchess.html

[17] C. Collberg, C. Thomborson, and G. M. Townsend,
“Dynamic graph-based software fingerprinting,” ACM
Trans. Program. Lang. Syst., vol. 29, no. 6, p. 35, 2007.

